Radyk, M. D., Browder, K. C., Travor, M. D., Wolfgang, K. J., Phillips, M. D. and Thomas, C. M. (202x) Spectrin tetramerization is required for normal brush border morphology and function in Drosophila. – in preparation.

Mattie, F.M., Kumar, P., Travor, M. and Thomas, C. M. (202x) Endosome-associated cytoplasmic capes in Drosophila are closely associated with sites of RNP export. Available at BioRxiv

Duan, R., Kim, J.H., Shilagardi, K., Schiffhauer, E., Son, S., Lee, D., Li, S., Thomas, C.M., Luo, T., Fletcher, D.A., Robinson, D.N., and Chen, E.H. (2018) Spectrin is a mechanoresponsive protein shaping the architecture of intercellular invasion. Nature Cell Biology. (2018) 20;688–698

Khanna, M.R., Crilly, S., Bakerink, K.J., Harper S., Speicher, D.W. and Thomas, C. M. (2015) Spectrin tetramer formation is not required for viable development in Drosophila. J. Biol. Chem. 290;706–715.

Wu, J., Bakerink, K.J., Evangelista, M.E. and Thomas, C. M. (2014) Cytoplasmic capes are nuclear envelope intrusions that are enriched in endosomal proteins and depend upon βH-spectrin and Annexin B9. PLoS One. 9;e93680

Tjota, M, Lee, S-K., Wu, J., Williams, J.A., Khanna, M.R. Thomas, C. M. (2011). Annexin B9 binds to βH-spectrin and is required for multivesicular body function in Drosophila. J. Cell Sci. 124, 2914–2926.   (Featured cover illustration)

Lee, S-K and Thomas, C. M. (2011). βHeavy-spectrin is part of a feedback loop in the regulation of the apical domain by Rac1. Mech. Dev. 128;116-128.

Khanna, M.R., Stanley, B.A. and Thomas, C. M. (2010). Purification of Plasma Membrane from Drosophila: A head membrane sub‑proteome. BMC Genomics 11:302.

Lee, H. G., Zarnescu, D. C., MacIver, B. and Thomas, C. M. (2010). The cell adhesion molecule Roughest depends on βHeavy-spectrin during eye morphogenesis in Drosophila. J. Cell Sci. 123, 277-85. (Featured cover illustration)

Phillips M. and Thomas, C. M. 2006. Brush border spectrin is required for the early endosome recycling pathway in Drosophila. J. Cell Sci. 119;1361-1370. (Highlighted in ‘In this issue’)

Williams J.A., MacIver, B., Klipfell, E.A. and Thomas, C. M. 2004. The non-repetitive C-terminal domain of Drosophila  βHeavy-spectrin exhibits autonomous membrane association and modulates endocytosis. J. Cell Sci. 117;771-782.(Featured cover illustration)

Thomas, C. M. and Discher, D.E. 2003. Conformational compliance of spectrins in membrane deformation, morphogenesis and signaling. in ‘Elastomeric Proteins’, P.R. Shewry, A. Tatham and A.J. Bailey, eds. pp213-241 Cambridge University Press, Cambridge, U.K.  (Solicited review)

Médina, E., Williams, J.A., Klipfell, E.A., Zarnescu, D.C., Thomas, C. M., Le Bivic, A. 2002. Crumbs interacts Moesin and βHeavy-Spectrin in the apical membrane skeleton of Drosophila J. Cell Biol. 158, 941-951. (Highlighted in ‘In this issue’)

Thomas, C. M. 2001. Spectrin: the ghost in the machine. BioEssays 23;152-160.  (Featured cover illustration)

Thomas, C. M. 2000. Biology in pictures: Good eggs and bad eggs. Curr. Biol. 10;R129. (Solicited feature on ’99 J. Cell Biol. Paper)

Zarnescu, D.C. and Thomas, C. M. 1999. Apical spectrin is essential for epithelial morphogenesis but not apico-basal polarity in Drosophila. J. Cell Biol. 146;1075-1086.  (Solicited feature on this paper is in Curr. Biol. 10;R129)

Thomas, C. M. and Williams, J.A. 1999. Dynamic rearrangement of the spectrin membrane skeleton during the generation of epithelial polarity in Drosophila. J. Cell Sci. 112; 2483-2852. (Featured cover illustration)

Thomas, C. M. 1998. Molecular evolution of spectrin repeats (Comment). Bioessays 20:600

Thomas, C. M., Zarnescu, D.C, Juedes, A.E., Bales, M.A., Londergan, A., Korte, C.C. and Kiehart, D.P. 1998. Drosophila βHeavy-spectrin is essential for development and contributes to specific cell fates in the eye. Development 125; 2125-2134. (Featured cover illustration)

Thomas, C. M., Newbern, C., Korte, C.C., Bales, M.A., Kiehart, D.P. and Clark, A.G. 1997. Intragenic duplication and divergence in the spectrin superfamily of proteins. Mol. Biol. Evol. 14; 1285-1295

Muse, S. V., Clark, A. G. and Thomas, C. M. 1997. Comparison of the nucleotide substitution processes among repetitive segments of the α- and β-spectrin genes. J. Mol. Evol. 44;492-500

Thomas, C. M. and Kiehart D.P. 1994. βHeavy-spectrin has a restricted tissue and subcellular distribution during Drosophila development. Development. 120;2039-2050.  (Featured cover illustration)

Kiehart, D. P., Montague, R., Rickoll, W., Foard, D., and Thomas, C. M. 1994. High resolution microscopic methods for the analysis of cellular movements in Drosophila embryos. Meth. in Cell Biol. 44;507-532

Thomas Laboratory coat of arms. The lating motto is ego debeo non somnus in ablay congressus
The logo for the US National Science Foundation
Inclusive science version of a 100% Sign (
Logo for the Penn State Rainbow Science Network